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The transition from steady to oscillatory three-dimensional convection in a cube of 
saturated porous material is calculated to occur a t  Rayleigh number R = 584 due to 
seven pairs of thermal blobs which circulate around the cube. This travelling wave 
instability is shown to be closely related, first as regards structural characteristics 
and then as regards mechanism of instability, to an analogous instability in t w o  
dimensions. The correspondence with the two-dimensional flow is established via a 
correspondence with a nonlinear base flow in a box of square planform of a different 
aspect ratio ( 1 / 4 2 )  and ultimately derives from the symmetries of the base flow in 
the cube. 

1. Introduction 
Viscous fluid in a saturated porous material can be unstable to buoyancy-driven 

convection. In  a closed container convection undergoes a sequence of transitions as 
the temperature difference from bottom to top is increased, much like those observed 
in the Rayleigh-Be'nard system. I n  a cubic box, the transition to time-dependence 
occurs as an oscillatory three-dimensional motion that replaces the steady three- 
dimensional pattern. The main result reported here is that the spatial structure of the 
destabilizing flow can be characterized as a rather simple travelling wave. Indeed, 
the Rayleigh number of the transition and the number of thermal cells (or vortical 
cells) in the destabilizing disturbance can be explained as a modification of what 
occurs for the two-dimensional layer with finite sidewalls, where the wave travels in 
a loop with a speed typical of the base-state motion and with a structure that 
balances self-induced convection with thermal diffusion. This is consistent with the 
observations of Kimura, Schubert & Straus (1989) that the sequences of transitions 
in two- and three-dimensional porous media are analogous. 

Recent numerical simulations of the Rayleigh-Be'nard system are mostly large- 
scale computations (which typically solve initial-value problems) ostensibly aimed a t  
capturing as many flow details as possible as far into the nonlinear regime as possible. 
In  contrast are the attempts to  interpret observations (experiment and simulation) 
from a dynamical systems point of view. Here there has been some success in 
identifying various routes to chaos, which typically include period-doubling, quasi- 
periodic and intermittent behaviour. However, the emphasis remains on temporal 
behaviour, and descriptions of spatial structures and their interactions with the 
dynamics are generally lacking. We show below that for the porous media analogue 
of the Rayleigh-Be'nard system the transition to time-dependence is accurately 
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described by a simple physical picture. Moreover, this picture necessarily couples the 
spatial and temporal behaviour. 

Experiments associated with fluid-saturated porous media are more difficult than 
those with pure fluids owing to the presence of the solid phase. On the other hand, 
the well-accepted model (i.e. governing equations) for the porous media system has 
several distinct advantages over its counterpart in the Rayleigh-Bdnard problem. 
The porous media equations on three-dimensional domains have been proved to have 
strong solutions globally in time (Fabrie 1986). This leads to the existence of a global 
attractor, estimates of its size and, in general, places the dynamical systems 
approach to this problem on a firm mathematical foundation (Titi 1991). Analogous 
results for the three-dimensional pure fluid case have not been forthcoming (nor have 
they in the case of the three-dimensional Navier-Stokes equations). There are also 
advantages to the porous media model from the point of view of computations. The 
governing equations, with realistic boundary conditions, admit a complete set of 
simple basis functions generated by a linear self-adjoint operator; this makes the 
problem especially suited to solution by spectral or pseudo-spectral techniques. 

Several authors (Horne 1979; Kimura et al. 1989; Stamps, Arpaci & Clark 1990) 
include the transition to time-dependence in their studies of three-dimensional 
porous media convection in a cube. Kimura et al. (1989, hereinafter referred to as 
KSS) have some of the most complete results. They solve an initial-value problem 
many times over using the pseudo-spectral approach in order to construct a sequence 
of transitions which lead from steady motion S, to a steady ‘less symmetric’ motion 
S’, to time-periodic P’, quasi-periodic QP, and back to a periodic motion P2 for 
Rayleigh numbers ranging from convection onset (R, = 4.571~) to sixteen times 
convection onset ( 16Rc). Penetration of the nonlinear regime is limited by 
computational capabilities. In a phase space, as a dynamical system, the states are 
characterized as:  a point (S), a different point (S’), a limit cycle (P ) ,  a torus (QP), 
and back to a limit cycle (P2). The computations rapidly become unwieldly owing to 
spatial complexity associated with the three-dimensional domain even though the 
dynamics in themselves are relatively simple and well-understood. Other than the 
‘reverse transition ’ (from a quasi-periodic to a periodic motion) which is somewhat 
unusual (Gollub & Benson 1980 apparently observe such a transition in their 
experiments with pure fluids), the dynamics are not particularly interesting. On the 
other hand, the spatial structures are coupled to the dynamics and this coupling is 
crucial to  the physics governing the transitions. KSS, like most authors, including 
Kimura, Schubert & Straus (1986), Caltagirone, Fabric & Combarnous (1987) and 
Caltagirone & Fabrie (1989), who perform extensive calculations on the two- 
dimensional porous media case, report measures of the temporal behaviour (power 
spectra, time traces, frequencies) as well as plots of the spatial structures but largely 
ignore the connection between space and time dependence. Exceptions include 
Lennie et al. (1988), who study the relationship between spatial and temporal 
behaviour for two-dimensional convection (rigid horizontal and stress-free lateral 
boundaries) of a Boussinesq fluid with infinite Prandtl number, heated from below 
or within, and Graham & Steen (1991), who demonstrate a connection between 
various quasi-periodic dynamics and travelling wave structures for two-dimensional 
porous medium convection. 

The transition from steady to  time-periodic motion is captured in our 
computations using the branch-tracing approach. The three-dimensional base state, 
stable from slightly above convection onset, is followed as the Rayleigh number (R) 
increases and its linear stability characteristics are calculated simultaneously. The 
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base state is unstable to a small-amplitude oscillation with frequency 183.2 f0.5 
(non-dimensional time-l) at R, = 584f 1 (Hopf bifurcation). This corresponds to an 
S-P transition and is the focus of our study. 

The branch-tracing technique has the advantage (relative to solving a series of 
initial-value problems, say) that points of bifurcation can be precisely detected, their 
nature identified, and the destabilizing disturbances exhibited. The latter makes a 
detailed understanding of the mechanism feasible. On the other hand, the 
disadvantage of the branch-tracing approach is the computational cost. Accurate 
solution of larger and larger (dense) eigenvalue-eigenvector problems ( - 1500 
equations) quickly becomes prohibitive. In our calculations that yield a time- 
periodic instability at R = 584 with a frequency 183 (S-P transition), we restrict 
disturbances to those with symmetry or antisymmetry about the vertical diagonals. 
The computations of KSS are unrestricted by imposed symmetry and yield a time- 
periodic transition at R = 575 with frequency 176 (S’-P transition). Furthermore, 
spatial structures of the time-dependent states from the two calculations are nearly 
identical. These results suggest that the slightly asymmetric branch S‘ is sufficiently 
like the symmetric branch S that the time-periodic instability on each branch is 
driven by essentially the same physics. 

The results of KSS concerning the S-S’ transition are inconclusive. They find that 
the transition occurs somewhere between R = 475 and 540 depending on whether 
Rayleigh number is increasing or decreasing and on the size of step change in 
Rayleigh number. Our calculations place the S-S’ transition at R = 495 and taken 
with the KSS observations lead to a bifurcation diagram consistent with all the 
evidence. 

The disturbance structure (the eigenvectors associated with the unstable 
eigenvalues) for the S-P transition is resolved to show that it is a wave travelling 
along a path which generally follows the circulation of the base state. A full loop of 
the wave has seven pairs of thermal disturbances and six pairs of vortices. The 
vorticity disturbances pass the thermal disturbances along the vertical leg of their 
journey, as was found in a study of the corresponding transition in a two-dimensional 
box (Steen & Aidun 1988). By a comparison with the well-understood two- 
dimensional problem, the influence of the third dimension is identified. The effective 
aspect ratio of the cubic box relative to the square box changes the ratio of time 
spent by a fluid packet along horizontal legs to time spent along vertical legs of 
trajectories. In addition there is added dissipation due to thermal diffusion in the 
third direction. 

The relationship between two- and three-dimensional results is established 
through a symmetry relationship which, although nearly trivial, seems not to be 
widely recognized. The slippery and adiabatic sidewall boundary conditions allow 
every pattern in a finite container to be extended to the horizontally infinite layer by 
replication (a tiling process). Spatial symmetries of the flow within the repeating 
block (the finite container) may make a different tiling possible. The building block 
of the second tiling may appear to be a different finite-container flow. However, 
finite-container flows which generate identical infinite flows are equivalent. For 
example, at convection onset, the so-called cross-roll mode (the superposition of two 
orthogonal rolls) in a box with square planform of aspect ratio l / d 2  is equivalent 
to a (apparently) fully three-dimensional mode in the cubic box (the [ill] mode - 
see below). This equivalence persists into the nonlinear regime as long as the flow 
symmetry is preserved. Furthermore, the flows will have equivalent stabilities as 
long as the mode of instability shares the same symmetry as the base state. The 
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convection pattern whose stability we examine develops from the [ 11 11 mode and 
maintains its symmetry as it deforms with increasing Rayleigh number along the 
branch. The destabilizing oscillation preserves the same symmetry. Hence, there is 
an equivalent flow in a box of square planform with aspect ratio 1 / 4 2 .  It turns out 
that the mechanism of instability can be easily recognized to be related to the 
mechanism in two-dimensional convection, in the context of the three-dimensional 
box of aspect ratio 1 / 4 2 .  

After reviewing the governing equations and their important features, we describe 
the computational approach and characterize the accuracy of the solutions. After 
presenting the bifurcation diagram that includes the SS’ ,  S’-P’ and S-P transitions 
and briefly describing the three-dimensional steady base state, the structure of the 
destabilizing disturbance is presented and the evidence for a travelling wave 
structure is developed. A comparison of the destabilizing disturbances in two- and 
three-dimensional containers is drawn and finally the three-dimensional effects are 
discussed. 

2. Formulation 
Consider a closed, rectangular box, filled with a fluid-saturated porous medium. 

Flow within is described by Darcy’s law and inertial terms are neglected (i.e. the 
permeability k of the medium is assumed very small). In addition, the effective 
thermal diffusivity of the medium is taken to be independent of velocity (i.e. the 
particle PBclet number is low). The horizontal top and bottom are isothermal with 
the bottom warmer than the top; when no motion occurs, a linear temperature 
gradient is present in the medium. The vertical walls are adiabatic. The buoyancy of 
the fluid is described by the Oberbeck-Boussinesq approximation ; the variable 
density of the fluid is retained only in the body force term of the momentum 
equation. All other physical properties are constant. The box has height 1 and 
horizontal dimensions h, 1 and h, 1, so the aspect ratios are h, and h, (for the cube, 
h, = h, = 1). Under these conditions, the dimensionless equations governing 
deviations from the linear conduction state are 

v - v  = 0, 

0 = -Vp-V+RRfek, 

a8 
at 
-+RRft~.(vB-k) = V26, 

V 6 . n  = 0 on sidewalls, x = -t+hh,, y = fib,, 
6 = 0 on top and bottom, z = 0,1, 

v . n  = 0 on all boundaries, I 
where u, p and 0 are the velocity, pressure and temperature deviations, respectively. 
The Rayleigh number is R = gaATkl/K, v ,  where a is the coefficient of thermal 
expansion of the fluid, g is the magnitude of the acceleration due to gravity, AT is 
the temperature difference between top and bottom, v is the kinematic viscosity and 
K, is an effective thermal diffusivity of the fluid-solid mixture. The scales are, for 
velocity Rkm/l,  temperature AT, length 1 and time 1 2 H / K m ,  where H is the ratio of 
volumetric heat capacity of the saturated medium to that of the fluid. 

It is convenient to reformulate (1) as a single integro-differential equation for 6 
(Steen 1986) ; the scalar temperature field determines the velocity field uniquely. The 
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linearization of (1) around the null solution yields an eigenvalue problem for the 
stability of the conduction state ; the resulting eigenfunctions are 

8, = cos -((z+- ) cos - ( y + & )  sin(mz), (y :hl ) (h: ) 
with corresponding eigenvalues 

where p = 0 , 1 , 2 . .  .; q = 0 , 1 , 2 . .  . ; r = 1,  2 , 3 . .  . ; i = [pqr] (Beck 1972). For a cubic 
box, convection onset occurs at  R, = 4x2 with [pqr] = [ O i l ]  or [loll  (these are 
equivalent states, one being rotated by ix around a vertical axis from the other). 
These steady states are two-dimensional rolls. The first ‘three-dimensional ’ steady 
state comes into existence at  R = 4 . 5 ~ ~ ’  with [pqr] = [ill]. It becomes linearly stable 
at R x 1.2R,, although the two rolls are still stable (Steen 1983). The domain of 
attraction of the [ill] state grows as R increases. This steady state is the subject of 
our study. We compute how it deforms as R increases and keep track of its linear 
stability. 

3. Computational approach 
The branch of nonlinear patterns that start with the structure of the [ill] mode 

at  convection onset will be termed the ‘S branch’. For fixed R we solve for a 
nonlinear state on the S branch by a Galerkin scheme, 

m 

ek, y ,  2, t )  = x a&) 8,b’ y, 4, 
i-1 

where 8, are eigenfunctions (2) and a, are the unknown coefficients. This choice of 
basis allows the coefficients in the resulting system of ODEs (formally equivalent to 
(1)) to be evaluated in closed form. The set of eigenfunctions used in the expansion 
need not be the full set. Most calculations reported here use only those that result 
from the nonlinear interactions of the [ill] mode with itself. All such modes are 
either symmetric or antisymmetric under reflection across the two vertical diagonals 
through the centre of the box. This choice does not limit the accuracy of the steady- 
state calculation, though for a complete linear stability analysis, modes which break 
this symmetry (e.g. [loll) must be considered. The infinite system of ODEs is 
obtained by expanding the integro-differential equation for 8 and projecting on the 
basis functions in the standard way, 

Calculation of closed-form expressions for the coefficients in terms of h,, h, and R is 
straightforward (Steen 1986). The issue of appropriate truncation of this infinite 
system is related to convergence and will be discussed below. Pseudo-arclength 
continuation (Doedel 1981) is used to compute the S branch of steady solutions from 
convection onset up to R x 600. The linear stability of a steady solution of (4) is 
calculated by finding the eigenvalues of its Jacobian evaluated at  the steady state. 
The steady state becomes linearly unstable when an eigenvalue with positive real 
part appears in the spectrum. 

Limitations of computation time preclude consideration of arbitrary disturbances. 
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Truncation order 

24 
28 
29 
30 
31 
32 
34 

Number of equations R, f 
650 586.7 140.1 

1015 590.7 186.5 
1120 580.7 180.7 
1240 587.1 185.0 
1360 582.4 180.6 
1496 584.7 183.8 
1785 583.9 183.2 

so 8, 8 2  

586.7 
590.7 587.8 
580.7 584.6 584.4 
587.1 584.4 584.7 
582.4 583.9 584.0 
584.7 584.1 
583.9 

TABLE 1 .  Values of R, with increasing truncation order 

Aitken-Shanks sequences of R,:  

s3 

584.5 

I and itken-Shanks sequences S,, 
\;here i is the number of Aitken-Shanks iterations 

However, it turns out that the relevant disturbances themselves retain a degree of 
symmetry and hence it is sufficient to consider a restricted class of modes. We 
distinguish three symmetry classes, each less restrictive than the previous one. First, 
the symmetry of the S branch is characterized by modes satisfying p + q ,  p + r and 
q + r  all even (see the discussion of the three-dimensional steady base state for an 
alternative characterization). The second class, which includes the symmetry of the 
instability yielding the S‘ branch, is defined by modes such that p + r is odd while 
q + r  is even or vice versa. The third class includes all modes, i.e. p ,  q and r are 
arbitrary. The S S ’  bifurcation is detected by considering instabilities in the second 
class, and for the S-P transition only disturbances in the first class need be 
considered (there, the symmetry in time is broken). 

We turn to the issue of truncation of the Galerkin expansion. Consider the three- 
dimensional space of wavenumbers p ,  q, r( > 0) of the expansion functions. Many 
Galerkin and pseudo-spectral studies of convection in viscous fluids and porous 
media use a basis corresponding to a cube in wavenumber space (McLaughin & 
Orszag 1982; Curry et al. 1984; Aidun & Steen 1986, 1987; Steen & Aidun 1988) or 
to a triangular pyramid (Veronis 1965; KSS). In two dimensions these regions are 
square and triangular, respectively. A cubic truncation contains the modes such that 
p < N ,  q <Nand  r < N ,  while a triangular or diagonal one contains those satisfying 
p + q + r  < M .  It has been argued on qualitative grounds that the triangular 
truncation is superior (Veronis 1965), but no rigorous criterion exists for determining 
which is better. We test convergence of steady solutions (via Nusselt numbers) 
against truncation shape including non-square and non-triangular shapes and 
conclude that the triangular truncations are most efficient. All calculations reported 
use a triangular truncation. 

The stabilities of a sequence of converged steady solutions are discussed next. All 
of these steady states undergo Hopf bifurcation. The critical Rayleigh numbers, R,, 
and frequencies f ,  of the destabilizing disturbances are shown in table 1. It is 
apparent that R, is converging to a value near 584. A sequence of Aitken-Shanks 
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600 

590 

4, 

580 

570 

Truncation order 

FIGURE 1.  R, vs. truncation order M :  squares are computed values (So in table 1) and circles are 
the first Aitken-Shanks iteration (SJ, where truncation is taken to be the middle value of the three 
truncation orders used in the transformation. 

transformations (also shown in table 1 )  accelerates the convergence of the sequence, 
giving a final estimate of 584.5. Figure 1 shows graphically the improvement 
achieved by the transformations. The frequency is converging to 183 and the 
frequencies of the four most slowly decaying disturbances have converged to at least 
two significant digits. Perhaps most importantly, the structures of the destabilizing 
disturbances are qualitatively unchanged for all truncations with M 2 28. The 
computations for the symmetry-breaking S S ’  bifurcation are performed with 
M = 32. 

4. Results and discussion 
4.1. S-S’ bifurcation 

The branch of steady convection patterns S stabilizes shortly above convection onset 
(R x 1.2R,) and remains stable to arbitrary infinitesimal disturbances until R = 495, 
where it destabilizes to a slightly asymmetric flow S‘. The asymmetry breaks the 
invariance of the two vertical planes that pass through diagonals but retains a 
symmetry obtained by reflection across the midplane, rotation by i7c with a 
concommitant change of sign of 8. In view of general results from bifurcation theory 
(Golubitsky & Schaeffer 1985), the symmetry-breaking nature of the instability 
forces the bifurcation to be a pitchfork (actually a ‘double pitchfork’ due to 
symmetry). Although we are able to compute the linear stability of the symmetric 
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44 48 495 584 
R 

FIGURE 2. Schematic bifurcation diagram of normalized heat transfer (Nu- 1 )  versus R showing S 
and S’ steady branches and the Hopf bifurcations P and P from them. Solid curves are linearly 
stable, broken ones unstable. The Hopf points are represented by the helical symbols. 

base state to appropriate disturbances and thereby detect the branch point, we are 
unable to follow the S’ branch into the nonlinear regime owing to  computational 
limitations. 

Nevertheless, a consistent picture can be constructed using evidence from KSS. 
The computed growth rates of the infinitesimal asymmetric disturbances to the 
branch S for a range of R above R = 495 are found to be exceedingly slow. In  
particular, the time for the unstable asymmetric disturbance to grow tenfold is 13.6 
thermal diffusion times at R = 500. At R = 540, where KSS first detect S’ on 
increasing R,  tenfold amplification requires 0.78 diffusion times. At R = 584 tenfold 
growth requires 0.22 diffusion times. The ability to  detect branch-switching via the 
initial-value problem approach depends on (i) the initial conditions for the calculation 
and (ii) the growth rate of the most unstable disturbances. If the initial condition is 
taken as the steady state from a lower R-value, then the amplitude of the 
‘infinitesimal ’ disturbance depends on the shape of the branch (slope, curvature, 
etc.) and the size of the step in R from the previous computation. In  view of the 
relatively flat nature of the S branch (the Nusselt number Nu varies less than 3% 
between R = 500 and 540), initial conditions set in this manner will represent low- 
level disturbances. The shorter the step in Rayleigh number, the smaller will be the 
amplitudes of the initial disturbance. 

All the observations of KSS concerning S S ’  branch-switching with increasing R 
can be explained by computation times limited to  about one diffusion time. 
Furthermore, the S and S’ branches remain very close in phase space in this range 
(less than 1 %  difference by a Nusselt number measure) and the stability 
characteristics of the S branch just below R = 495 are similar to the instability 
characteristics just above R = 495 - i.e. very slow decay rates. This would explain 
the KSS observations that on decreasing R the S branch is not detected until 
R = 475. Moreover, this view is consistent with our premise that the S and S’ 
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z = 0.95 

z = 0.50 

t 

z = 0.05 \\, t 
FIGURE 3. Schematic of the base-state velocity field at three horizontal positions in the cube. 

Cubes 

New box: aspect ratio I / d 2  

FIQURE 4. Construction of a box with aspect ratios 1 / 4 2  from two adjacent cubes, viewed from 
the top. Because of symmetry, this box or the cube offer alternative basic cells for a periodic tiling. 

branches are sufficiently similar to share the same mechanism of instability to 
time-periodic disturbances. In summary, evidence suggests a bifurcation diagram 
near the S-P and 8’-P transitions as shown in figure 2. Henceforth we discuss only 
the S and P states. 
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z = 0.95 

z = 0.50 

z = 0.05 

FIGURE 5. Schematic of the base-state velocity field at three horizontal positions 
in the l / d 2  box. 

4.2. The three-dimensional steady base state (S)  
Figure 3 shows the general nature of the base state: cold fluid in two of the bottom 
corners of the box flows across the bottom toward the diagonal, picking up heat ; the 
flow near this diagonal is a reverse ‘stagnation line’ flow; the now warm fluid 
accelerates up from the diagonal and splits into two upward-moving lobes a t  the 
horizontal midplane of the box; the fluid reaches the top of the box to  again flow 
from corners to diagonal, but now releasing heat to the cool top before accelerating 
back downward to  split into two downward-moving lobes. In  the top corners, to 
which hot fluid is convected, and the bottom corners, to  which cold fluid moves, 
steep, unstably stratified temperature gradients develop as R increases. Figure 3 
shows clearly that the velocity (and temperature) fields are mirror symmetric across 
the vertical diagonal planes through the centre of the box, so that in essence, these 
planes are no-flux boundaries. In  addition, the velocity is invariant, and the sign of 
the temperature changed, under reflection through the horizontal midplane followed 
by rotation by in around a vertical axis through the centre of the box. If, for the 
moment, the origin is placed at the centre of the cube, these symmetries can be 
expressed as 

O(z, y ,  z )  = O(y, z, Z), 

O(z,y,z) = O ( - Y ,  - x , z ) ,  
O(z, y ,  2) = - O(Y, x, - 2)- 
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FIGURE 6. Temperature fields at z = 0.05, near the bottom of the cube. Base state is at the centre, 
surrounded in clockwise progression by the disturbance at intervals of b period. Time increases 
clockwise; t = 0 is at the upper left. Solid lines represent positive disturbance, and dashed ones, 
negative. 

Owing to these symmetries, each of the four triangular prisms bounded by the walls 
and vertical diagonals are invariant and identical to within a reflection. We shall take 
advantage of this invariance to clarify the nature of the steady state, and later, the 
disturbance. 

Consider two adjacent cubes in which convection is occurring, as shown in figure 
4. Because of the symmetries, the rectangular box between diagonals of the original 
cubes is invariant, and the flow in it satisfies the same boundary conditions as 
imposed on the walls of the cube. This new box can be treated just as the cube was, 
but it has aspect ratios hl = h, = 1 /42 .  Convection onset in a box of this geometry 
occurs via simultaneous bifurcation of the [Oll] and [ lol l  modes (two-dimensional 
rolls) at R, = 4.57~~ (Beck 1972). This is the same critical Rayleigh number at which 
the [ l l l ]  mode appears in the cube, and through a coordinate transformation the 
[lll] mode in the cube is identical to an equal superposition of the [Oll] and [loll 
modes in the new box. Thus the flow in the new box is simply the nonlinear evolution 
of two orthogonal rolls, a cross-roll. The base-state velocity is shown schematically 
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FIGURE 7. Disturbance temperature field on vertical diagonals through the centre 
of the cube a t  t = 0. 

in figure 5. The flow is symmetric across the vertical diagonal that  is the common 
sidewall of the two original cubes used to form the new box. If the two rolls did not 
interact, the two-dimensional evolution of one of them would represent the 
behaviour of the entire flow. Thus, the flow in the cube would be the superposition 
of two orthogonal, but otherwise identical, two-dimensional structures. Of course, 
the rolls do interact, yielding the three-dimensional effects that will be discussed in 

4.3. Structure of the three-dimensional disturbance (S-P) 
We present here the results from an M = 30 triangular truncation, for which 
R, = 587.1 and f = 185.0. The centre plot in figure 6 shows the isotherms of the steady 
state a t  a horizontal surface near the bottom of the box in the thermal layer where 
temperature gradients are steep ( z  = 0.05). In  this and all base-state plots, we add 
the linear temperature profile. Disturbance isotherms are shown in clockwise 
progression around the box at intervals of of an oscillation period. Solid lines 
represent positive disturbance 8, and dashed ones, negative. A wavy structure is 
evident in the disturbance. The alternating cold and hot regions are propagating 
from the two corners where gradients are steep toward a diagonal, in the same 
manner as the base flow (cf. figure 3). We can also see, in this plane at least, that the 
disturbance preserves the spatial symmetries of the base state. It turns out that these 
symmetries are preserved throughout the box. Figure 7 shows disturbance isotherms 
on the vertical diagonals connecting opposite corners of the cube. It is clear that 

$4.5. 
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FIQURE 8. Temperature fields at y = 0.5, a sidewall of the cube. Base state is at centre, surrounded 
by the disturbance. Same sequence w figure 6. The base flow on this wall is clockwise. 

seven pairs of thermal blobs are present. A disturbance starting in the lower right 
corner moves across the bottom of the box in roughly two periods, lifts up from the 
bottom at the diagonal, splitting as it moves through the centre of the box in another 
1.5 periods to the top corners, where the process repeats, and the blob returns to the 
bottom. The entire process takes seven periods. Figure 8 shows the thermal base 
state (centre) and disturbance on a sidewall, y = 0.5, where the disturbance is 
strongest. Figure 9 shows the vorticity disturbance corresponding to the isotherms 
of figure 8. The vorticity at the walls is perpendicular to the walls because of the 
boundary conditions, so it can be regarded as a scalar. There are six pairs of vorticity 
blobs, and one of them slips past two thermal blobs on the adiabatic sidewall. A 
vorticity blob takes 2 periods to traverse the bottom, but then only 1 instead of 1.5 
to reach the top, so each vorticity blob traverses the box in 6 periods. 

The nature of the disturbance is clarified by examining the energy equation, 
linearized about the steady state, 

20 

( 5 )  
ae 
at 
-+R$*V& = V2G-&B*(VB-k), 

FLM 232 
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FIQURE 9. Vorticity fields at y = 0.5, a sidewall of the cube. Base state is at centre, surrounded 
by disturbance. Same sequence as figure 6. 

where bars and hats denote base-state and disturbance quantities, respectively. This 
equation can be rewritten as 

(Ve- k), (6) 
a$ A 

at 
-+Rrij.V(j = @ = VZ$-Rfi). 

where CD represents the coupling between the left- and right-hand sides. One way to 
measure 0, the coupling function, is to multiply (6) by 0 and integrate over the 
volume of the cube. This yields 

d 
-(@) dt = (6@) = ( $ V z 6 ) - R t ( $ ; . V B ) + R t ( ~ ; . k ) ,  (7) 

where ( * )  represents integration oyer the volume. Evaluating these terms at  the 
solution for oscillation onset yields (Ba), a measure of the coupling. If @ 5 0 the left- 
and right-hand sides decouple. 

This decomposition by decoupling was first discussed in, the context of two- 
dimensional convection, where (OCD) is less than 1 % of ( d V z e ) ,  the largest term on 
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the right-hand side (Stecn & &“dun 1988). We summarize that discussion. Consider 
first the left-hand side, where 6 is viewed as unknown and ij as prescribed : 

a6 
at 
--+Rb-.V6 = @ x 0. 

This equation for convection of disturbance temperature by base-state velocity is a 
first-order wave equation. It suggests that the thermal disturbance is convected with 
the steady flow as a travelling wave with yave speed R%. This equation governs 
‘ propagation ’. The presence of the factor R? is due to the different scalings of time 
and velocity. 

The right-hand side of (6) in the limit of decoupling can be rewritten 

V26 = Rf;. (Ve- k ) .  (9) 

This equation represents a balance between diffusion of disturbance energy and 
convection of base-state energy via disturbance velocity and is elliptic in nature. 
Note that the momentum equation governing disturbances can be solved for and 
substituted in (9) to eliminate 6 in favour of 8 and the disturbance pressure field $, 

Vz6 = (R6k-Rh7$)*(Ve-k). (10) 

Note, furthermore, that  $ is a functional of the temperature fie14 6 so that (10) is 
effectively an equation for the unknown scalar temperature field 6 with coefficients 
determined by the base-state field e. Equation (10) can then be viewed as 
determining the ‘structure’ of the disturbance, given the base state. Once the 
structure is determined, it may be used as an initial condition in (S), which then 
determines its propagation. 

The success of this approach was demonstrated in two dimensions (Steen & Aidun 
1988). There, the domain for (8) and (9) was assumed to  be a characteristic loop 
determined by the base flow. A transplantation of (8) and (9) onto the one- 
dimensional loop domain leads to a modified Mathieu-Hill equation governing the 
disturbance structure. Solutions of this eigenvalue problem fit on the loop first with 
increasing Rayleigh number a t  R = 390+ 10 and only with five pairs of thermal 
disturbances. This matches the exact results closely (see below). In  other words, the 
structure equation predicts both the Rayleigh number a t  oscillation onset and the 
disturbance wavenumber. 

The primary balance represented by (9) or (10) is between convection of the base- 
state thermal field by buoyancy-generated disturbance velocity and thermal diffusion 
of disturbances. However, disturbance velocities generated by pressure gradients 
also influence wavenumber selection and explain why, for example, travelling waves 
with five pairs of thermal blobs destabilize before those with three pairs for the 
square box, while the reverse occurs for shallower boxes (aspect ratio greater than 
about 2.5, Graham & Steen 1991). In summary, not only must thermal gradients be 
sufficiently large to  destabilize the thermal boundary layers of the base state, but the 
disturbance velocity must be of phase such that the disturbances ‘fit’ on the loop. 
An alternative view of similar structures that arise in pure fluid Boussinesq 
convection, heated from below or within, is offered by Lennie et al. (1988). In  that 
study, as in the present one, the initial Hopf bifurcations arise owing to convected 
thermal boundary-layer instabilities. The mechanisms for further transitions 
differ, however, because the boundary-layer fluctuations develop differently in the 
internally heated and heated-from-below cases. In  the internal heating case, period- 
doubling or quasi-periodic behaviour occurs because of plumes which burst out of the 

20-2 
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FIGURE 10. Temperature fields at the Hopf bifurcation in a square, R, = 390.7. Base state is at 
centre, surrounded by disturbance. Same sequence as figure 6. 

boundary layer. In the two-dimensional saturated porous medium heated from 
below, quasi-periodic behaviour and reverse transitions occur owing to  interactions 
between Hopf bifurcations corresponding to boundary-layer instabilities of differing 
wavenumbers (Graham & Steen 1991 ). 

After developing the similarities between the two- and three-dimensional 
disturbances in the next section for comparison purposes, we contrast them in the 
last section in order to resolve the three-dimensional effects. 

4.4. Comparison of the two- and three-dimensional disturbances 

The transition to two-dimensional oscillatory convection in a square domain occurs 
at R, = 390.7 with frequency f = 82.8 (Aidun & Steen 1986). The temperature 
disturbance consists of five pairs of blobs convected around the box by the base-state 
velocity. This structure is shown in figure 10. Comparison with figure 8 shows the 
obvious similarity between the two- and three-dimensional structures. The apparent 
differences are the much stronger boundary-layer temperature gradient of the base 
state and the higher wavenumber of the disturbance in the three-dimensional case. 
In  the square, there are four pairs of vorticity blobs, while in the cube, there are six. 
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In  both cases, vorticity disturbances pass thermal oqes as they travel vertically. 
Furthermore, for the cube the coupling constant (60) is also relatively small, 
although not as small as in the case of the square. This suggests that the decoupling 
of structure and propagation also holds for the cube, and that the essential 
mechanism for the oscillatory transition is common to both the two- and three- 
dimensional cases. This conclusion is not surprising given the fact that the 
three-dimensional flow is simply the nonlinear evolution of two interacting two- 
dimensional rolls, as discussed above. 

In both two and three dimensions, the sequence of further transitions is marked 
by periodic regimes separated in Rayleigh number by regimes of quasi-periodic 
behaviour and hysteresis (Kimura et al. 1986; Caltagirone & Fabrie 1989; KSS). In 
two dimensions this sequence is due to interactions between Hopf bifurcations, as 
mentioned above. Computations show that there is a similar set of Hopf bifurcations 
in three dimensions, only the first of which is discussed here. These computations and 
the demonstrated similarity between the Hopf bifurcations in two and three 
dimensions suggest that  the two-dimensional mechanism for further transitions may 
also apply to the three-dimensional transitions. 

4.5. Three-dimensional effects 
The strong similarities between the disturbances in the square and the cube suggest 
that two-dimensional effects are important in determining the critical Rayleigh 
number and disturbance structure in the cube. This is indeed so. Recall that the [ 11 11 
mode in the cube is equivalent to the superposition of the [loll and [ O i l ]  rolls in a 
box with h, = h, = 1 / 4 2 .  In a box of this geometry, the roll undergoes a Hopf 
bifurcation a t  R, = 536.7. The frequency is 123.2 and the wavenumber of the 
thermal disturbance is five. If only two-dimensional effects were present, these would 
be the characteristics of the Hopf bifurcation of the [ l l l ]  state in the cube. Hence 
three-dimensional effects must account for the further increase in R, from 537 to 584, 
and the increase in wavenumber from five to seven. Of course the two orthogonal 
rolls interact to produce three-dimensional modes. For example, their first-order 
interaction yields the [112] mode (in the new box). It is known that near convection 
onset, this mode decreases the heat transfer from that of either of the orthogonal rolls 
(Zebib & Kassoy 1978). 

The stabilization of the flow by three-dimensional effects is related to  the more 
rapid decay due to diffusion of a heat source in three dimensions relative to that in 
two dimensions. It can be understood through equation (lo), which is observed to 
hold approximately a t  oscillation onset for the cubic box as well as for the square 
domain. Ignoring effects of disturbance pressure for the time being, this is an 
eigenvalue problem with ‘eigenvalue ’ R(de/dx - 1 )  which characterizes the energy 
transfer from the base state (-R due to conduction and R(de/dz) due to steady 
convection). In  order to balance the increase in V26 in three dimensions, the energy 
transfer to disturbances must increase, which can occur through an increase in R or 
d8/dz or both. Both increases are observed. The increase in wavenumber is primarily 
related to the more rapid conductive decay in three dimensions, but may also be 
influenced by the pressure field, probably in much the same way as occurs in two 
dimensions. 

A quantitative account of the influence of three-dimensional effects is possible and 
would follow the line developed in the two-dimensional case (Steen & Aidun 1988). 
However, since these effects are relatively less important than two-dimensional 
geometric effects, they will not be pursued here. 
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We summarize by discussing the three-dimensional distribution of disturbance 
strength relative to the two-dimensional case. The disturbance is strongest on the 
sidewalls of the cube, as can be seen clearly in figure 6. We can also see from this 
figure that the disturbance wavefronts are nearly circular arcs, indicating that the 
wave speed does not vary significantly with position at  the bottom of the box, so a 
disturbance propagating along a sidewall spends longer in the thermal layers than 
does a disturbance propagating in the interior of the cube. Therefore, the disturbance 
is strongest on the sidewalls because i t  is there that a disturbance is exposed longest 
to the destabilizing temperature gradient. One may think of the sidewalls as having 
an effective aspect ratio of unity, and the diagonals, where the disturbance is 
weakest, as having effective aspect ratio 1/.\/2. At Convection onset and a t  
oscillation onset in two dimensions it is known that the critical Rayleigh number and 
thermal gradient strength increase as aspect ratio decreases from unity because of 
the relative time disturbances spend moving horizontally, accumulating energy, and 
moving vertically, dissipating it. The distribution of disturbance strength in the cube 
is another manifestation of this effect. The disturbance develops primarily on the 
sidewalls, with three-dimensional influences extending its structure throughout the 
cube. 

5. Conclusions 
Stable steady three-dimcnsional convection in a cube possesses spatial symmetries 

as well as the symmetry of time-invariance. It first suffers a spatial symmetry- 
breaking instability followed by a breaking of the temporal symmetry. The nature 
of the bifurcation diagram in the neighbourhood of the S-P bifurcation is clarified. 

Transition to time-dependent motion in the cube occurs as a Hopf bifurcation to 
a travelling wave structure with seven pairs of thermal blobs and six pairs of 
vortices. The wave travels on a path (loop) determined by the average base flow 
along which disturbances are sustained by self-induced buoyancy-driven convection. 
Evidence suggests that  the number of disturbances is determined by how many can 
fit on a closed path for given driving force, just as in the two-dimensional ease. 
Indeed, a coordinate transformation maps the flow into a box of aspect ratio 1 / 4 2 .  
This geometric effect accounts for 76% of the increase in R, over that in the two- 
dimensional square domain. The remaining 24 YO of the stabilization is attributable 
to greater thermal diffusion in directions orthogonal to the direction of propagation 
of the wave. 
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